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Abstract. The phase diagram of a classical tetragonal Heisenberg model with in-plane 
nearest, second-nearest , and third-nearest neighbour exchange interactions consists of ferro- 
magnetic (F), antiferromagnetic (AF), and two helix (HI and H2) configurations. The Hl-H2 
transition line is an infinite degeneration line, because infinite inequivalent helices minimise 
the energy of the model. A fourth-nearest neighbour interaction lifts the infinite degeneracy 
andmakes t h e ~ i - ~ z  transition first order. In the hexagonallattice a morecomplexinteraction 
scheme, involving fifth- and sixth-nearest neighbours, supports a novel phase, in which the 
helix wavevector changes continuously spanning all directions. In the tetragonal lattice we 
find an analogous phase supported by a fifth-nearest neighbour interaction. 

Renewed attention has recently been paid to classical models, even if one cannot exclude 
the possibility that quantum effects could dramatically affect the classical picture. Very 
interesting phenomena were discovered in classical magnetic models, such as soliton 
excitation (e.g. see [l]) and Kosterlitz-Thouless phase transition [ 2 ] .  

Concerning Heisenberg helimagnets, unorthodox configurations, which we call 
degenerate helix (DH), were found as the result of a suitable in-plane exchange com- 
petition in hexagonal and tetragonal models with interactions up to third-nearest neigh- 
bours J , ,  J 2 ,  and J3 (3N model), assuming that the nearest neighbour (NN) interaction J ,  
is ferromagnetic [3]. In figure 1 we give the phase diagram at zero temperature of the 3~ 
classical Heisenberg model. Along the line J2 = U,, which we call the degeneration line, 
the energy of the 3N model is minimised by infinite inequivalent helices corresponding 
to infinite helix wavevectors Q satisfying the following equation: 

COS(UQ,) + COS(UQ,) = -J,/WZ. 

In the absence of any anisotropy the magnon spectrum vanishes for all k = Q given by 
equation (l), leading to a catastrophic number of thermally excited spin deviations which 
destroy long range order (LRO) even in 3~ at any finite temperature. An analogous 
scenario was found in the rhombohedral Heisenberg antiferromagnet (RAF model) [4] 
with NN interactions, because the in-plane interaction favours the 120" three sublattice 
configuration, whereas the interplane interaction prefers collinear configurations so that 
frustration is produced and a DH scenario is established. 

An interesting question regards the survival of the DH scenario in the presence of 
additional perturbations as, for instance, further interactions. It is well established that 
a fourth-nearest neighbour interaction [5] removes the infinite degeneracy in the 3~ 
model and makes the Hi-Hz transition first order in both tetragonal and hexagonal 
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Figure 1. Phase diagram at zero tem- 
perature of the 3N classical tetragonal 
Heisenberg model: F, AF, HI ,  H2 refer to 
ferro-, antiferro-, and two the helical 
magnetic phases, respectively. 

lattices. On the other hand a novel phase, where the helix wavevector changes con- 
tinuously, spanning from the HI to the HZ configuration, was found in the hexagonal 
lattice for in-plane interactions up to sixth-nearest neighbours [6] .  Here we look for the 
existence of a similar phase, which we call a swinging helix (sH), in a tetragonal Hei- 
senberg model. 

The reduced energy of the tetragonal model for small helix wavevectors, reads 

e(Q)  = E(Q)/4J1NS2 

= eh') + eio)Q2 + [eho) + e$') cos(46)]Q4 + [e$') + e$') cos(46)]Q6 

+ [e$@) + e$')  COS(^^) + C O S ( S ~ ) ] Q ~  . . . (2) 
where E(Q) is the energy of our model in a helical configuration, 6 is the angle between 
Q and a NN direction. The conditions of minimum energy for a helix whose wavevector 
Q is directed neither along a NN (HI) nor along a NNN (HZ) line, read 

ero) + 2[eio) + e$') cos(40)]Q2 + 3[e$') + e$') cos(46)]Q4 + . . . = 0 (3a)  
e$') + e$')Q2 + [e$') + 4ei2) cos(46)]Q4 + . . . = 0 

ei@) + eil)   COS(^^) + . . . > 0 

4(e$'))2 + 12ei')e&')Q2 + [9(e$'))' + 16ei')ei') 

- 8ei0)ei2) + 56e$')ei2) cos(46)]Q4 + . . . < 0. 
We look for solutions near the triple point F -H~-H~ corresponding to e\@) = e$') = 0. At 
the lowest order in Q the solution of equations (3a) and (3b)  is given by 

Q 2  = eio)/2ei0) = -ei')/e$') ( 5 )  
where e$') and e&l) have to be evaluated at the triple point. 

Substitution of equation ( 5 )  into equations (4a) and (46) gives 

eioj > 0 (6a)  

- 8e$o)e$2) < 0. (6b )  
At this point we have proved the possibility of having a non-conventional helix whose 
wavevector changes continuously its direction and magnitude between the HI and HZ 
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helical phases for a generic helimagnet with tetragonal symmetry. We stress that a similar 
configuration is a novelty in the scenario of the helimagnetism; this argument has been 
extensively studied in the last thirty years both experimentally and theoretically [7]. 

We shall now try to characterise this unorthodox SH phase in a tetragonal Heisenberg 
model with in-plane NN ferromagnetic interaction and competing exchange couplings 
up to fifth-nearest neighbours. We limit ourselves to this interaction scheme because it 
is sufficient to support the phenomenon in which we are interested. 

We now give the relevant coefficients entering the reduced energy (2) where the 
interplane coupling J’ is not accounted for, since its effect is simply to yield a ferro- 
magnetic or antiferromagnetic interplane ordering depending on J’ is positive or nega- 
tive, respectively. 

(7a) = -1 - j 2  - j 3  - j ,  - j ,  

ero) = (1/4)(1 + 2j2 + 4j3 + 5 j4  + Si,) 
e$’) = -(3/4!8)(1 + 4j2 + 16j3 + 25j4 + 64j5) 

e$1) = -(1/4!8)(1 - 4j2 + 16j3 - 7j4 - 64j,) 

e$*) = (3/6!16)(1 - 8j2 + 64j3 - 35j4 - 512j5) 

el2) = -(1/8!128)(1 + 16j2 + 256j3 - 527j4 + 4096j5) 

( 7 4  

(7e) 

(7f 1 
where j, = z J J , / z l J 1 ,  z being the coordination number. The F-H~-H~ triple point is given 
by 

j 2  = -(1/4)(1 + 9j4 + 32j5) 

j 3  = -(1/8)(1 + j 4  - 16j5). 

1 - 7j4 - 321, > 0 

j: + 2j,(l + j , )  < 0. 

(sa) 

(8b) 

(90) 

(9b) 

Equations (6a) and (6b) then become 

For small j4 and j, equation (sa) is always satisfied, while equation (9b) requires j, < 0. 
In order to find the region where the SH phase first occurs we come back to equations 
(3a) and (3b). By the definitions 

E = (loa) 

6 = 1 + 8 j 3  + j 4  - l6j, (lob) 

equations (3a) and (3b) become 

(1/4)& + (1/4!4)Q2[6(1 - 7j4 - 32j5) - 3 ( 2 ~  + 6) - (36 - 2.5)  COS(^^)] 

- (45/6!16)Q4[3(1 - llj, - 64j,) + (1 + 5 j 4  + 64j,) cos(46)] = 0 
(1la) 

- (1/4!8)(36 - 2 ~ )  - (15/6!16)Q2[1 + 5j4 + 64j, + (1/5)(4~ - loa)] 

+ (7/8!32)Q4[9(3 + 19j4 + 384j,) + 5(1 + 17j4 - l28j,) cos(46)I = 0. 
(1lb) 

The solution of equations (1 la)  and (11 b) is given by 
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Figure2. Wedge-shaped regionofexistenceofthesHphaseforj, = Oandj, = -0.01. Broken 
lines refer to the phase diagram of the 3N model. 

Q 2  = a6 + [Bo  + B1 c0s(48)]6~ 

E = a6 + [bo + bl  cos(48)]6* 

B1 = (1 + 9j4)/3(1 -- 3j4)3 b, = [4j’4 + 8js(l + j4)]/(1 - 3j4)3. (14c) 

As one can see in figure 2,  equations (12) and (13) give the value of the Q wavevector of 
the novel SH phase as well as its wedge-shaped region of existence shown forj, = 0, j s  = 
-0.01. 

In summary we have shown that the degeneration line is destroyed by further 
exchange interactions, but that a phase in some sense reminiscent of the degenerate 
helix can arise in a wider parameter space. This novel phase consists of a narrow but 
finite wedge-shaped region where the helix wavevector assumes all possible directions. 

We expect that the zero point motion (which is a dangerous mechanism as regards 
the survival of the DH phase [3, 81 in the SH phase should affect only the value of the 
energy of any SH configuration, so that this novel phase should not be removed by the 
zero point motion and it could be observed in real compounds. 

An interesting point worthy of further investigation is the posssibility of exploring 
all SH configurations by application of an in-plane external magnetic field. This possibility 
has been proved to occiir in the RAF model [9] where a particular helix out of the DH 
manifold is selected by an in-plane magnetic field. However, this conjecture requires 
further theoretical effort. 
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